
NASA TECHNICAL NASA TM X-71673
MEMORANDUM

I-

(n

(NASA-TM-X-71673) ON THE KERNEL FUNCTION N75-17612

FOR THE UNSTEADY SUPERSONIC CASCADE WITH

SUBSONIC LEADING EDGE LOCUS (NASA) 21 p HC
$3.25 CSCL 20D Unclas

G3/34 11766_

ON THE KERNAL FUNCTION FOR THE -UNSTEADY SUPERSONIC
CASCADE WITH SUBSONIC LEADING EDGE LOCUS

by M. E. Goldstein
Lewis Research Center 40
Cleveland, Ohio 44135
February, 1975 % n



This information is being published in prelimi-
nary form in order to expedite its early release.



1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA TM X-71673
4. Title and Subtitle 5. Report Date

ON THE KERNAL FUNCTION FOR THE UNSTEADY SUPER-

SONIC CASCADE WITH SUBSONIC LEADING EDGE LOCUS 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

E-8220M. E. Goldstein 10. Work Unit No.
9. Performing Organization Name and Address

Lewis Research Center
11. Contract or Grant No.

National Aeronautics and Space Administration

Cleveland, Ohio 44135 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

Technical Memorandum
National Aeronautics and Space Administration 4. Sponsoring Agency Code

14. Sponsoring Agency Code
Washington, D. C. 20546

15. Supplementary Notes

16. Abstract

A function integral equation governing the unsteady motion of a supersonic cascade is derived.

Various representations of the Kernal function are derived and discussed.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Unclassified - unlimited

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*

Unclassified Unclassified

: For sale by the National Technical Information Service, Springfield, Virginia 22151



ON THE KERNEL FUNCTION FOR THE UNSTEADY SUPERSONIC CASCADE

WITH SUBSONIC LEADING EDGE LOCUS

by M. E. Goldstein

INTRODUCTION

In current aircraft engine technology there has been considerable

interest in the problem of the unsteady supersonic cascade with subsonic

axial velocity. Thus we consider a two-dimensional oscillating cascade

with a subsonic leading edge locus in a supersonic flow which is uniform

0
far upstream. We suppose that the blades have small thickness and

camber and are undergoing small amplitude harmonic oscillations. Kurosaka

has obtained a low frequency analytical solution to this problem and Verdon
2

has obtained a finite difference solution.

In this note we reduce the problem to the solution of a functional

integral equation and derive and compare two representations of the kernel

function which are useful for computations.

DERIVATION OF INTEGRAL EQUATION

Consider a two-dimensional oscillating cascade with a subsonic lead-

ing edge locus in a supersonic flow which is uniform far upstream. The

blades which are assumed to have small thickness and camber, are undergo-

ing small amplitude harmonic oscillations. We suppose that all lengths

are nondimensionalized by the half-blade chord, c/2, the time t is non-

dimensionalized with respect to c/2 divided by the free stream velocity

U, the pressure fluctuation p is nondimensionalized by the free-stream

density po times U 2 , the upwash velocity v is nondimensionalized by U

and a denotes the free stream speed of sound. Then the pressure fluctua-

tion is governed by the equation (see fig. 1)



2

a2 22 T2 2k2 = 0 (1)
ay ax

where

pei (wt-M k x )  (2)

2  M2

k wM/ 2

M = U/a is the free stream Mach number and the upwash velocity is

related to the pressure by

ia2kx/M (e-i2kx/M iMkx (
-e -x -e (3)

where

V = ve

The upwash velocity on the nth blade is assumed to differ from that

of the Oth blade by only a phase factor so that

V(x + ns ,ns)= ein V(x,O) for 1xI < 1, n = 0,,2, . . . (4)

where a is the interblade phase angle and the upwash velocity on the

0 th blade is related to its displacement WOe -iwt by

V(x,0) = -iW + Q WO(x) for jIx < 1

As is usual we suppose for convenience that the frequency has a small

positive imaginary part which we shall set equal to zero at the end of the

analysis. Then

k = kr + ic with 0 < e << 1

and the outgoing wave boundary condition at infinity is now replaced by a

boundedness condition.

Since equation (1) possesses the separation of variables solution
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e-i(ax-ayy)

where

the boundary condition (4) suggests that (following Lane and Friedman
3 )

we seek a solution in the form of the superposition

T T' (5)
U n
n=-M

where

o+i6

sg n f ()e-i(xn-Bylyn ) d (6)
n 2 n

we have put (see fig. 1)

n = 0,+1,+2, . .
Yn = y - ns

and in order to insure that the solution remain bounded at infinity we have

chosen the branch cut for the square root, y, and the integration contour,

ar + is, in the manner shown in figure 2 (with 6 > E). This solution

possesses the jump discontinuity

[Y(x)] = In(x)] fn (ai)e ixn da (7)

across the line y = ns passing through the nth blade since it is only

possible to satisfy the requirement that the upwash velocity be continuous

by allowing a discontinuity in the pressure. The resulting pressure dis-

continuity (in front of and behind the blade will be eliminated in the

subsequent analysis.



Since the upwash velocity, v, vanishes at infinity, equation (3) can

be integrated to obtain

x

V = ei 2kx/M ikx'/M DT (x',y)dx'V = - e (x,y)dx
ay

Inserting equations (5) and (6) and carrying out the integration now shows

that

V= eiMkx f - k (sgn ) fn()e - i (e n l ) d (8)
2i y - k

i n-=

If we put

fn(a) = e fo()

where

r = - Mks +  (9)

It is easy to show from equation (8) that

V(x + ns+ , y + ns) = einoV(x,y)

Hence the boundary condition (4) is automatically satisfied and

1 () a itno-(c-Mk)xn+Y Yn (0
V - Mfo(aC (sgn yn) e d (10)i2 6y Ma - k

On the other hand since [W(x)] = 0 for jxl > 1 we can invert the

Fourier transform in equation (7) (with n = 0) to obtain

f0(a) = 2 []e i a x dx
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Upon inserting this into equation (10) and interchanging the order

of integration, we obtain

1-

V(x,y) = K(x - x',y)[P(x')]dx' (10)

where

p = pe i t = e i Mk x  (11)

and

K(x,y) - M (sgn yn) e dm
i47 3Y I - ki4 y (12)

By letting y - 0 we obtain an integral equation for the pressure

ium [P] across the zeroth blade in terms of the known upwash velocity on

the blade surface. Namely,

V(x,0O) = K(x - x')[P(x')]dx' (13)

where

KO(x) - lim K(x,y) (14)

y+0

EXPRESSIONS FOR THE KERNEL FUNCTION

The form (12) and (14) for the kernel function is not suitable for

numerical evaluation because the integral will not converge if we just put

6 = E = 0 in the integrand. In order to carry out this limit it is con-

venient to express the kernel in a different form.

Form 1. - Using the results of appendix A shows that



K ()\ i(nc+Mkxn)

K2(x) 22

kn i i[na+( 2k/M)xn] (ik/M)x, n - s )n-222

ak H(x - B nsj)e e
2 n 2 222

n=-x - n s

+ Jokx 2n2s2 ei(k/M) ( /2 2n2s2)d (15)

M Ins
Because of the Heaviside function, H, the sum only need to be carried out until

the largest n for which ns + Bslnj < x. For a subsonic leading edge st > se

hence for Ixl < 1 no terms with n greater than 1/(s + Bs) can occur

in the sum.

Form 2. - Since N),:( - Mk) = 0 and ,,.y > 0 for 6 = ME

(-00 < a < .) it follows that

i[(a-Mk)ns +eyiYn] < 1

and we can use the geometric series

\n 1Zn

Lz 1 -- z
n=0

to evaluate the sum in the integrand of equation (12) to obtai

0 < y <s
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\ i[na+ns((a-Mk)+ y JYnl] eiByy e-iByy+2i
e + 1

/ 1 - e-21- 1 - e2id+n=-oo

1 e i ( A -+ y )  ei(A-YY)

2i sin - sin A+

where

A+ [ - Mks + ast + B s] (16)

Hence
+ieM

-i (a-Mk)x

e e

K0 ( x )  8 m y

ei(A_+yy) e i(A+-y) Yy)
x _ + dea (17)

sin A- sin 4

At first glance it might appear that the integrand in this expres-

sion possesses branch points due to the appearance of the radical y.

However, it can easily be verified by replacing y by -y that this

function depends only on y2 and the branch points are therefore

"canceled," and the integrand possesses only poles.

We can therefore use Jordan's lemma to evaluate the integral in

terms of its residues. To this end notice that the poles of the integrand

occur at a = k/M and at the points where

a = nr for n = 0, ±1, ±2,....

But it follows from equation (16) that the latter points are given by

+ s sB n 2a~ r + -k (18)
n n d 2 d d18)

where we have put
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Fn - -o + Mks t + 2nf for n = 0, +1_l, +2, . . (19)

and

dt _ ist2 22 (20)

Notice that d t is real for the subsonic leading edge. The + sign

corresponds to the roots which lie in the upper half plane and the - sign

to those in the lower half plane. The locus of roots in the complex

a-plane is shown in figure 3.

When x < 0 we must close the contour in the upper half plane and

when x > 0 in the lower half plane. Hence

fKt(x) x < 0

KO(X) = (21)
K0 (x) = (x) x 0 (21)

where

K(x) E+ Res in erhalf plane
S /  lower

Then upon using the results of appendix B to evaluate the residues we find

that

-i[(an-Mk)x+(Pn-a s ) j2
(rn-a st) e

(x) = lim n (22)
2y- ( +  k) (stp - dt 2 a+)

Fr- -00

and

sinh (ws) e i I

K-(x) -
= cosh (as)-cos (a - s W)

1 (r - acst) e (23)

yi-O (an s) (str - dt2a n

These series are only conditionally convergent and will not converge at
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all if we take the derivative. In order to obtain convergent series

notice that

a n  k2s + O(n- 2 ) as n +
n t 2rn

+s 8 s n

Hence the nth term of these sums behaves like

Ix 8Y \-ir

e as n oo

n

The series composed of these terms will converge to a row of step

functions. Hence its derivatives will converge to a-row of delta func-

tion. We can evaluate the latter series by using the theory of distri-

butions to show that (Lighthill4 )

nrn

y-a 1 es rs

a-Mks x 2irrx

_+ ie e

s t . Ps

= + ige s s - 6[x - n(st + s)]

n=-Mx

= +i - ein(a-Mks t) (x, ± psn)



Hence, 10

+± i (no+Mkxn) (24)
K-(x) = K- + e 6(x sn)

2 n
n=-oo

where

+ )2 -i x \ [nx/(s-PS)
e i Mk x  ( - cst) e + (25)

2s (a, n -) (P - dt2 a) S - ps

n= -o

and

a sinh (ws) ex

2[cosh(ws) -cos ( - st w)

t) 2  -lanx -iPnx/(s t+s)
iMkx (-n - (ns ) ei nx sBe(2

k) ( t2 n) s + ps (26)

l -0

are now convergent series.

COMPARISON OF KERNEL FUNCTION REPRESENTATIONS

When the kernel function given by equations (21), (25), and (26) or

that given by equation (15) is substituted into the integral equation (13)

we obtain a functional integral equation (and not an ordinary integral

equation) due to the introduction of terms of the form

[P(xn + lnlsa)]

caused by the integration of the delta functions. The second form of the

kernel function has two advantages over the first. Namely its series

converge like einx/n rather than like e inx/n and it is much simpler

and faster to evaluate the terms of its series than evaluating Bessel

functions.



The series in (25) and (26) are only conditionally convergent.

However, it is shown in appendix C that the same device which was used

to make the original converge can also be used to replace the series

(25) and (26) by absolutely convergent series. Although the results,

which are given by equations (Cl) and (C2) are now more complicated,

they are definitely more suitable for numerical computation. They show

that the removal of the slowly convergent part of the series results in

~+
a row of step functions which represent the discontinuities of K-. The

series which appear in (Cl) and (C2) represent continuous function.
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APPENDIX A

It follows from reference 5 that

i ei(aY-ba)
- y da = J 0 (kX2 - a 2 )H(b -a )

-vo+i

where a and b are real numbers, y = ya2 - kZ and

I x > 0
H(x) =

Hence

i f i(ay-ba) 2 - 2 d6(b - a )

T2 f ye dia = 2 -- JO(k - a H(b - a ) - da2 ia dar

2
2 (b -a)

- e- i a da = H(b - a) ib (k a2db

+ eicb 6(b - a) - a +ic)eicaH(b - a )

where c = cr + i (c/M) (see fig. 2). But using the identity

2 2 - a2 = b2  + 2 (k

shows thatk

shows that
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1 foIi6S i~ay+(c-a)bI _______l -

2irJ doa H(b - a )L-eic~ 2 .

"2 2' 1 i 2)I
-kc~ ij e10 p a db

+ e icb 6(b -a)
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APPENDIX B

Put

ei(aMK(2) e(A YY)
I+(a) - (BI)

k sin A

Then since

a sin A+ 1 s 1-sin A l + a cos A+ (yst ± sa)cos A

and since equation (16) shows that

(Trn - an t) = asy(an) - asyn

if an is a root of A+ = niT, it follows that whenever a is in the

neighborhood of a root can of A+ = nT

(-1)n(a - a ) st dt2a

± - 2y n n d( - 2

Hencc

2(Fn [- ns+)e-i (an-Mk)x+(rn-ans )y/s]

lim (a - an)I~(a) =2
n n M )(srn d n)

Since

lim + - iy sin(A+ - A) -i(a-Mk)x
y k sin A sin A

SiBy 2 sin ys e - i ( a - Mk ) x

Skcos Sys - cos(a - Mkst + ast)
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it follows that the residue of the integrand at a0  is

i82k 2  sinh (B2ks/M)e i 2 kx /M) 21w sinh (ws) ei nx

M cosh (82ks/M) - cos (a - 82stk/M) cosh (ws) - cos (a - s)
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APPENDIX C

Upon retaining terms of order n-1 we find that the nth term of

the sums in equations (22) and (23) now behaves like

1 k(l - 6n 0 iMkx n
!-- + s ex- (x TSy as n co

2nrM 2  1). $9j
Hence we can improve the convergence of the sums in equations (25)

and (26) by adding and subtracting

Sx 2inJTx

-e 2Mrr s( - 2 iMk n(1 -6 ) t- es(l s n x e
2(st'Ss) 2Ms 2 n

4M s t + 8s n=l-

to obtain

i~k 2 s Il
to obai



17

Mkx ( - a+s)2 -ix s-se n -n se
2s + k t as

s- dt a st - gsn M n n
n=-oo

+ k( - 6r iMkx
x + 2nrM (s t - 5s, )

t a s(1 iMkx {jsMk
iBk 2 s - s J
4M t

S1 2x + 2 [H(x + $sn) - H(-Bsn - xn )  (C1)
s -s n n

iwx eiMkx (r - as t) 2 ianx

K , + a- i_ +s

2cosh (s) - cos (a s) 2s - (s - d 2
s±+ n n ffin

if xn
+
s +s k( - 6 0) st + 1 iMkx

+ + 2nM 2

s + Bs
it iMkx i T f[

x s2xs + 2 H(x - sn) H(Ban xn) (C2)
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